209 research outputs found

    Covering pairs by q2 + q + 1 sets

    Get PDF
    AbstractFor given k and s let n(k, s) be the largest cardinality of a set whose pairs can be covered by sk-sets. We determine n(k, q2 + q + 1) if a PG(2, q) exists, k > q(q + 1)2, and the remainder of k divided by (q + 1) is at least √q. Asymptotic results are also given for n(k, s) whenever s is fixed and k → ∞. Our main tool is the theory of fractional matchings of hypergraphs

    Upper and Lower Bounds on Long Dual-Paths in Line Arrangements

    Full text link
    Given a line arrangement A\cal A with nn lines, we show that there exists a path of length n2/3O(n)n^2/3 - O(n) in the dual graph of A\cal A formed by its faces. This bound is tight up to lower order terms. For the bicolored version, we describe an example of a line arrangement with 3k3k blue and 2k2k red lines with no alternating path longer than 14k14k. Further, we show that any line arrangement with nn lines has a coloring such that it has an alternating path of length Ω(n2/logn)\Omega (n^2/ \log n). Our results also hold for pseudoline arrangements.Comment: 19 page

    Game saturation of intersecting families

    Get PDF
    We consider the following combinatorial game: two players, Fast and Slow, claim kk-element subsets of [n]={1,2,...,n}[n]=\{1,2,...,n\} alternately, one at each turn, such that both players are allowed to pick sets that intersect all previously claimed subsets. The game ends when there does not exist any unclaimed kk-subset that meets all already claimed sets. The score of the game is the number of sets claimed by the two players, the aim of Fast is to keep the score as low as possible, while the aim of Slow is to postpone the game's end as long as possible. The game saturation number is the score of the game when both players play according to an optimal strategy. To be precise we have to distinguish two cases depending on which player takes the first move. Let gsatF(In,k)gsat_F(\mathbb{I}_{n,k}) and gsatS(In,k)gsat_S(\mathbb{I}_{n,k}) denote the score of the saturation game when both players play according to an optimal strategy and the game starts with Fast's or Slow's move, respectively. We prove that Ωk(nk/35)gsatF(In,k),gsatS(In,k)Ok(nkk/2)\Omega_k(n^{k/3-5}) \le gsat_F(\mathbb{I}_{n,k}),gsat_S(\mathbb{I}_{n,k}) \le O_k(n^{k-\sqrt{k}/2}) holds

    Linear Programming in the Semi-streaming Model with Application to the Maximum Matching Problem

    Get PDF
    In this paper, we study linear programming based approaches to the maximum matching problem in the semi-streaming model. The semi-streaming model has gained attention as a model for processing massive graphs as the importance of such graphs has increased. This is a model where edges are streamed-in in an adversarial order and we are allowed a space proportional to the number of vertices in a graph. In recent years, there has been several new results in this semi-streaming model. However broad techniques such as linear programming have not been adapted to this model. We present several techniques to adapt and optimize linear programming based approaches in the semi-streaming model with an application to the maximum matching problem. As a consequence, we improve (almost) all previous results on this problem, and also prove new results on interesting variants

    The early evolution of the H-free process

    Full text link
    The H-free process, for some fixed graph H, is the random graph process defined by starting with an empty graph on n vertices and then adding edges one at a time, chosen uniformly at random subject to the constraint that no H subgraph is formed. Let G be the random maximal H-free graph obtained at the end of the process. When H is strictly 2-balanced, we show that for some c>0, with high probability as nn \to \infty, the minimum degree in G is at least cn1(vH2)/(eH1)(logn)1/(eH1)cn^{1-(v_H-2)/(e_H-1)}(\log n)^{1/(e_H-1)}. This gives new lower bounds for the Tur\'an numbers of certain bipartite graphs, such as the complete bipartite graphs Kr,rK_{r,r} with r5r \ge 5. When H is a complete graph KsK_s with s5s \ge 5 we show that for some C>0, with high probability the independence number of G is at most Cn2/(s+1)(logn)11/(eH1)Cn^{2/(s+1)}(\log n)^{1-1/(e_H-1)}. This gives new lower bounds for Ramsey numbers R(s,t) for fixed s5s \ge 5 and t large. We also obtain new bounds for the independence number of G for other graphs H, including the case when H is a cycle. Our proofs use the differential equations method for random graph processes to analyse the evolution of the process, and give further information about the structure of the graphs obtained, including asymptotic formulae for a broad class of subgraph extension variables.Comment: 36 page

    The largest eigenvalue of rank one deformation of large Wigner matrices

    Full text link
    The purpose of this paper is to establish universality of the fluctuations of the largest eigenvalue of some non necessarily Gaussian complex Deformed Wigner Ensembles. The real model is also considered. Our approach is close to the one used by A. Soshnikov in the investigations of classical real or complex Wigner Ensembles. It is based on the computation of moments of traces of high powers of the random matrices under consideration

    The history of degenerate (bipartite) extremal graph problems

    Full text link
    This paper is a survey on Extremal Graph Theory, primarily focusing on the case when one of the excluded graphs is bipartite. On one hand we give an introduction to this field and also describe many important results, methods, problems, and constructions.Comment: 97 pages, 11 figures, many problems. This is the preliminary version of our survey presented in Erdos 100. In this version 2 only a citation was complete

    Random Tensors and Planted Cliques

    Full text link
    The r-parity tensor of a graph is a generalization of the adjacency matrix, where the tensor's entries denote the parity of the number of edges in subgraphs induced by r distinct vertices. For r=2, it is the adjacency matrix with 1's for edges and -1's for nonedges. It is well-known that the 2-norm of the adjacency matrix of a random graph is O(\sqrt{n}). Here we show that the 2-norm of the r-parity tensor is at most f(r)\sqrt{n}\log^{O(r)}n, answering a question of Frieze and Kannan who proved this for r=3. As a consequence, we get a tight connection between the planted clique problem and the problem of finding a vector that approximates the 2-norm of the r-parity tensor of a random graph. Our proof method is based on an inductive application of concentration of measure

    Tur\'an numbers for Ks,tK_{s,t}-free graphs: topological obstructions and algebraic constructions

    Full text link
    We show that every hypersurface in Rs×Rs\R^s\times \R^s contains a large grid, i.e., the set of the form S×TS\times T, with S,TRsS,T\subset \R^s. We use this to deduce that the known constructions of extremal K2,2K_{2,2}-free and K3,3K_{3,3}-free graphs cannot be generalized to a similar construction of Ks,sK_{s,s}-free graphs for any s4s\geq 4. We also give new constructions of extremal Ks,tK_{s,t}-free graphs for large tt.Comment: Fixed a small mistake in the application of Proposition

    Noise-Resilient Group Testing: Limitations and Constructions

    Full text link
    We study combinatorial group testing schemes for learning dd-sparse Boolean vectors using highly unreliable disjunctive measurements. We consider an adversarial noise model that only limits the number of false observations, and show that any noise-resilient scheme in this model can only approximately reconstruct the sparse vector. On the positive side, we take this barrier to our advantage and show that approximate reconstruction (within a satisfactory degree of approximation) allows us to break the information theoretic lower bound of Ω~(d2logn)\tilde{\Omega}(d^2 \log n) that is known for exact reconstruction of dd-sparse vectors of length nn via non-adaptive measurements, by a multiplicative factor Ω~(d)\tilde{\Omega}(d). Specifically, we give simple randomized constructions of non-adaptive measurement schemes, with m=O(dlogn)m=O(d \log n) measurements, that allow efficient reconstruction of dd-sparse vectors up to O(d)O(d) false positives even in the presence of δm\delta m false positives and O(m/d)O(m/d) false negatives within the measurement outcomes, for any constant δ<1\delta < 1. We show that, information theoretically, none of these parameters can be substantially improved without dramatically affecting the others. Furthermore, we obtain several explicit constructions, in particular one matching the randomized trade-off but using m=O(d1+o(1)logn)m = O(d^{1+o(1)} \log n) measurements. We also obtain explicit constructions that allow fast reconstruction in time \poly(m), which would be sublinear in nn for sufficiently sparse vectors. The main tool used in our construction is the list-decoding view of randomness condensers and extractors.Comment: Full version. A preliminary summary of this work appears (under the same title) in proceedings of the 17th International Symposium on Fundamentals of Computation Theory (FCT 2009
    corecore